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ON ONE FUNCTION DEFINED ON THE CARTESIAN

PRODUCT AND GUINNESS NUMBERS

R.A.ZATORSKY

Abstract. New numbers, called Guinness numbers, are introduced using cer-

tain function of natural argument. Few problems related to these numbers are

formulated.

”The year 2000 was approaching. I realized humans living on the Earth were

killing It with their ”civilization” and ”civility” and finally would perish themselves

like bacteria in a dying human organism. But I rejoiced at our fate to live to see the

turn into the new millennium. As my destiny is to be involved with mathematics,

I felt a burning desire to ”exalt” the year 2000 using the language of mathematics.

Right then I thought up the mathematical idea described below, which to some

extent made it possible to achieve the desired goal. I saw that the number G2000

is the one-half Guinness number, but could not publish it due to some reasons.

Then, due to similar reasons, I missed the successive one-half Guinness numbers

G2001, G2006 and G2007. But I cannot but record the next one-half number Guinness

G2013 for I do not know whether I will see the year 2031 when the new one-half

Guinness number G2031 ”appears”” — this is how the preface to the author’s book

”Guinness Number G2013” begins. Besides the preface, this book includes only one

number, the so-called one-half Guinness number G2013.

This photo presents the book ”Guinness Number G2013”, which consists of two

parts. As a comparison, next to it is the author’s book of standard size containing

508 pages.
1

http://arxiv.org/abs/1309.1436v1


2 R.A.ZATORSKY

The Guinness number G2013 consists of 40,259,996 digits and is the smallest

positive integer1 having the following nontrivial properties: the first four figures of

the number G2013 make up the number 2013. If these first four figures are removed

and added to the end of the number G2013 in the same order, the formed number

will be reduced by 2013 times. The book consists of two parts with the total number

of pages - 3655. Each page, except the last one, contains 106 lines with 104 signs

in each of them.

Following is the definition of the whole and one-half Guinness numbers and the

special function fn, with the help of which these numbers can be generated. At the

end of the article you can find a number of questions I failed to find the answer to

as well as some useful applications of the function fn.

1. Operation fn and Guinness Numbers

Let’s call numbers by People’s name.

People will remember numbers as long as they exist.

Numbers will ”remember” people in case the latter disappear.

Let us have some positive k-digit number n and assign the Cartesian product to

each such a positive number

Ωn = {0, 1, 2, . . . , 10k − 1} × {0, 1, 2, . . . , n− 1}.

This Cartesian product can be presented graphically on the Cartesian plane as a

rectangle of integral points (points with integer coordinates) with the main diagonal

connecting the beginning of the coordinates with the point (10k − 1, n− 1).

1April 04, 1978, at the scheduled meeting of the Academic Council of the Computing Center

at the AS of the USSR, which was held to discuss the next thesis for a candidate degree in

physics and mathematics, the question was raised whether the submitted thesis qualified for a

candidate degree in physics and mathematics or rather a candidate degree in science. The thesis

contained no theorem; there was only one program written in LISP, which allowed to determine

the operations of artificial intelligence. The opinions of the present council members divided.

The director of the institute A.Dorodnitsin had the say. He stated that each program can be

considered a theorem on the solubility of some problem. And if the program works, then one can

claim that the theorem is proved. This statement was supported by A.Markov who suggested that

the statement be specified: ”Each program is a theorem, the validity of which is proved for those

cases when the program gives the correct answer.” Thus, to prove the fact that this number is the

smallest positive integer with the described above properties, one is to develop a simple program

and the computer is to produce the expected result.
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Definition 1.1. Let the function fn : Ωn → Ωn assign the point (x′, y′) ∈ Ωn to

the arbitrary point (x, y) ∈ Ωn, i.e. fn(x, y) = (x′, y′), while the following equality

holds

nx+ y = x′ + 10ky′.

The function inverse to the function fn is the function f−1
n

, when the equality

f−1
n (x′, y′) = (x, y) is performed as long as fn(x, y) = (x′, y′).

It is easy to prove that both functions defined above are bijective mappings of

the set Ωn into themselves. The point (x, y) is the fixed point of the function fn,

provided that fn(x, y) = (x, y). It is easy to prove that the coordinates of the points

of the function fn satisfy the equality

(n− 1)x = (10k − 1)y,

and these points are on the main diagonal of the Cartesian rectangle Ωn , while

for an arbitrary positive n the function fn has at least two fixed points (0, 0) and

(10k − 1, n− 1).

Example 1. All the fixed points of the function f34 in the set Ω34 are defined

through the equation

x = 3y.

They are 34 points: (3i, i), i = 0, 1, . . . , 33.

As the set Ωn is bounded and consists only of fixed and moving points, it is

arguable that with the help of some initial point (x, y), which is called the generating

point, the function fn generates the orbit

On(x, y) = {(x, y), fn(x, y), f
2
n(x, y), . . . , f

r−1
n }

of length r, where r is the smallest positive integer, for which the following equality

holds f r
n
(x, y) = (x, y).

Below among all the generating points (x, y) of the orbit On(x, y), generated by

the function fn, the point (n, 0) is of special importance and is called a standard

generating point of the set Ωn.

Definition 1.2. The point (x, y) = (x, y) is the conjugate point to the point (x, y),

if the following equalities hold

(1.1) x = 10k − 1− x, y = n− 1− y.
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It is easy to show that the conjugate points are symmetric relative to the point,

which is the symmetry center of the square Ωn.

Proposition 1.1. For the arbitrary point (x, y) ∈ Ωn from the equality

(1.2) fn(x, y) = (x, y)

follows the equality

(1.3) fn(x, y) = (x, y)

and vice versa.

Thus, sometimes conjugate points form the orbit of length 2.

Example 2. In the set Ωn, where n is a single-digit or double-digit number, there

are no self-conjugate orbits of length 2; in the set Ω103 there are 6 different self-

conjugate orbits of length 2 :

(76, 95) ↔ (923, 7), (153, 87)↔ (846, 15), (230, 79)↔ (769, 23),

(307, 71) ↔ (692, 31), (384, 63)↔ (615, 39), (461, 55)↔ (538, 47),

and in the set Ω142 they number 71.

Proposition 1.2. Given two non-conjugate points (x, y), (x′, y′) of the set Ωn, the

equality

fn(x, y) = (x′, y′),

implies the equality

fn(x, y) = (x′, y′).

Proof. The first equality of this proposition equals the equality

nx+ y = 10ky′ + x′.

Taking it into consideration, we have the following equalities

n(10k − 1− x) +n− 1− y = 10kn− 1− (nx+ y) = 10k(n− 1− y′) + (10k − 1− x′),

which are equal to the second equality of this proposition. �
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Thus, if among the points of the orbit On(x, y), generated by the function fn,

there is no pair of conjugate points, then in the Cartesian set Ωn there is one more

orbitOn(x, y), which is called the conjugate orbit to the orbit On(x, y), while graph-

ically these orbits are symmetric relative to the symmetry center of the rectangle

Ωn. There are also self-conjugate orbits containing interconjugate points only. If

presented graphically, these orbits are centrosymmetric.

Fig.2

In this figure, the dashed segments connect the pairs of the conjugate points,

and (x, y) → (x′, y′) means f37(x, y) = (x′, y′). The set Ω37 numbers 34 orbits with

such a structure, and the set Ω46 — 18 ones.

Definition 1.3. The whole Guinness number is a number Gn, generated by the

function fn with the help of a standard generating point (n, 0), if the length of its

respective orbit On(n, 0) equals |Ωn| − 2.

The one-half Guinness number is defined in the same way.

Definition 1.4. The one-half Guinness number, generated by the function fn with

the help of a generating point (n, 0), is a number Gn, the respective orbit length of

which equals 1

2
|Ωn| − 1.

We cite the program in the Maple language n := 2013 : k := 4 : x := 2013 : y :=

0 : i := 0 : z := x : t := y : m := n ∗ z + t : t := floor(m/10k) : z := m− 10k ∗ t :

i := i + 1 : while‘or‘(x <> z, y <> t)dom := n ∗ z + t : t := floor(m/10k) : z :=

m− 10k ∗ t : i := i+ 1enddo : print(i)

In this program, at the input we have k = 4-digit number n = 2013 and the

standard generating point (n, 0) = (2013, 0), and at the output we have the orbit

length O2013(2013, 0) = i. Under this program, the computer produces the number

10064999 after no longer than 5-minute work. Since all the first components of each

pair of the orbit is four-digit numbers, then the one-half Guinness number G2013

contains only

10064999 · 4 = 40259996

figures.
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It is easy to make certain that among single-digit numbers, the one-half Guinness

number is the number 9, and the whole Guinness numbers are the numbers 2, 3 and

6.

Let us cite all double-digit one-half Guinness numbers:

14,20, 21, 24, 27, 30, 33, 41, 48, 51, 54, 62, 66, 69, 75, 77, 87, 90, 92.

The following are all three-digit one-half Guinness numbers:

102, 105, 108, 135, 144, 162, 165, 183, 189, 192, 204, 213, 222, 231, 240, 261,

267, 273, 276, 291, 294, 303, 306, 309, 327, 330, 339, 357, 372, 378, 390, 420,

444, 456, 465, 474, 498, 507, 513, 522, 525, 534, 537, 543, 564, 567, 585, 588,

600, 603, 609, 612, 621, 639, 645, 660, 663, 669, 672, 696, 705, 726, 732, 738,

765, 774, 789, 795, 807, 819, 822, 834, 840, 855, 873, 885, 891, 894, 906, 921,

933, 936, 942, 957, 975, 981, 990.

Definition 1.5. Two one-half Guinness numbers Gn and Gn+1 are called twin

one-half Guinness numbers.

Among the double-digit numbers, there is only one pair of the twin one-half

Guinness numbers, and among the three-digit numbers there is no pair like that.

The following are first few pairs of four-digit twin one-half Guinness numbers:

(1085, 1086), (1091, 1092), (1109, 1110), (1160, 1161), (1187, 1188), (1208, 1209),

(1316, 1317), (1337, 1338), (1370, 1371), (1553, 1554), (1658, 1659), (1742, 1743),

(1775, 1776), (1796, 1797), (1889, 1890), (1922, 1923), (2000, 2001), (2006, 2007),

(2174, 2175), . . . .

If the function fn in the set Ωn generates m1 orbits of the length r1, m2 orbits

of the length r2 etc. ms orbits of the length rs, this fact will be denoted by

Ωn ∼ {rm1

1 , rm2

2 , . . . , rms

s },

while the following equality holds |Ωn| =
∑s

i=1
rimi.

Thus, decomposition of the Cartesian set Ωn, connected with a positive integer

n, by the orbits, to a great extent, resembles factorization of positive integers.

Ω10 ∼ {110, 3330}, Ω11 ∼ {12, 32, 3928}, Ω12 ∼ {112, 5422}, Ω13 ∼ {14, 2166}

Ω14 ∼ {12, 6992}, Ω15 ∼ {12, 10714}, Ω16 ∼ {14, 312, 524, 1596}, Ω17 ∼ {12, 2836}
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Ω18 ∼ {12, 32, 1282, 3844}, Ω19 ∼ {110, 15126}, Ω20 ∼ {12, 9992}, Ω21 ∼ {12, 10492}.

Due to this, it is natural that the following questions arise.

Problem 1. Are there whole Guinness numbers Gn for multi-digit numbers n?

Problem 2. The cardinality of the set of the one-half Guinness numbers should

be studied.

Problem 3. The law of distribution of positive integers n in the natural se-

quence, for which numbers Gn are one-half Guinness numbers, should be studied.

Problem 4. The cardinality of the set of twin Guinness numbers should be

studied.

2. Operation fn and Multidigit Number Product

”The external is similar to the internal; the little is the same as

the big; the law is one for all... ” (Hermes)

For simple positive integers n, the operation fn is found in every algorithm for

multidigit number multiplication.

Example 3. Suppose it is necessary to multiply a single-digit number n = 2 by

some positive integer x4x3x2x1x0 = 72389. The product of these numbers can be

obtained with the operation f2, which is sequentially applied to the pairs

(x0, y0) = (9, 0), (x1, y1) = (8, 1), (x2, y2) = (3, 1), (x3, y3) = (2, 0), (x4, y4) = (7, 0).

At that we get the respective pairs:

(x′

0, y
′

0) = (8, 1), (x′

1, y
′

1) = (7, 1), (x′

2, y
′

2) = (7, 0), (x′

3, y
′

3) = (4, 0), (x′

4, y
′

4) = (4, 1).

Note that according to the multiplication algorithm, we start from the zero value

y0, and all other values yi, i = 1, 2, 3, 4 are selected according with the equalities

yi = y′
i−1, i = 1, 2, 3, 4. The product result is the number

y′4x
′

4x
′

3x
′

2x
′

1x
′

0.

The operation fn generalizes the algorithm for multiplication of a single-digit

number by an arbitrary positive k-digit number. Let us have some multidigit num-

ber m and k–digit number n. In order to find the product mn, it is necessary to

partition a number m, starting from its end, into s groups with k figures in each

one, and then to proceed as in the previous example.
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Example 4. If, for instance, m = 2345678 and n = 23, then in this case, the

operation f23 is applied sequentially to the following pairs

(x0, y0) = (78, 0), (x1, y1) = (56, 17), (x2, y2) = (34, 13), (x3, y3) = (2, 7).

At that we obtain the respective pairs

(x′

0, y
′

0) = (94, 17), (x′

1, y
′

1) = (05, 13), (x′

2, y
′

2) = (95, 7), (x′

3, y
′

3) = (53, 0)

and the product result is the number 0′53′95′05′94.

Thus, we obtain the algorithm for multidigit number multiplication.

Now generation of the Guinness numbers generated by a k–digit positive integer

n and a standard generating point (n, 0) is obvious. To generate this number

according to the described above algorithm for multidigit numbers, it is enough

to write the first components of the orbit On(n, 0) from the right to the left in

succession.

3. Operation fn and Tilings

Numbers like people have their ”face” and ”nature”.

Since the operation fn for some n partitions the set Ωn into an even number of

interconjugate orbits and a certain number of self-conjugate orbits, then with the

help of this operation one can construct a rectangular tiling with the symmetry

center at the intersection of the diagonals of this rectangular. For this, the points

of the interconjugate orbits should be combined and filled with some color.

Example 5. f8–operation partitions the set Ω8 into six orbits with the length of

13 and two fixed points. Combining the sets of the interconjugate orbit pairs into

one set, we get three groups with 26 points in each one and one group consisting

of two fixed points. Now we shall relate some color to each group of points, and

the unit square on the Cartesian plane to each pair of these sets. Thus, we obtain

a colored rectangular. Paste together several obtained colored rectangulars and

obtain a centrally symmetric tiling, which is given by the positive integer 8.
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Fig.3.

Note that the distinctive pattern corresponds to the representation on the Carte-

sian plane of points relating to the orbits On(n, 0). Thus, each positive integer has

its ”face” and ”nature”. Below in Fig.4 and 5 the points of the orbits O9(9, 0) and

O7(7, 0) are represented respectively.

Fig.4. Fig.5.

4. Guinness Numbers and Pseudorandom Number Generators

”The generation of random numbers is too important to be left to

chance.” (Robert R. Coveyou)
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The one-dimensional pseudorandom number generator (PRNG)[1] stands for the

algorithm generating the number sequence, the elements of which are almost inde-

pendent of each other and evenly distributed on some segment.

PRNG is applied in various fields of human knowledge: computer science, pro-

gramming, Monte Carlo method [2], cryptography [3] etc.

The first algorithm for generating pseudorandom numbers was offered by the

American mathematician, one of the founders of computer science, John von Neu-

mann. His algorithm is also known as the middle-square method consisting in choos-

ing an arbitrary 4–digit number a = 0, a1a2a3a4; squaring it a
2 = 0, a′1a

′

2a
′

3a
′

4a
′

5a
′

6a
′

7a
′

8

and passing on to a new 4–digit number 0, a′3a
′

4a
′

5a
′

6 etc.

The main advantage of this arithmetic algorithm is its simplicity, and its disad-

vantage is that it generates no more than 10000 different numbers.

In [4], the first author of this article has offered a two-dimensional arithmetic

generator of pseudorandom numbers, which is based on the operation fn. This

PRNG is somewhat similar to John von Neumann’s arithmetic generator. The

second author of the article [4] has tested the offered generator in the system of

distance learning and knowledge control, and the third author has tested it with the

help of standard criteria: uniformity, intervals, ”maximum–t” and poker criterion.

In this article, the sequence of pseudorandom numbers is given by the first and

second components of the orbit On(n, 0). In this context a positive integer n is cho-

sen so that the number Gn is a whole or one-half Guinness number. For instance,

with the help of the one-half Guinness number G200000, we can construct an orbit,

which is a two-dimensional random array with the period of 99999999999. Despite

John von Neumann’s statement: ”anyone who attempts to generate random num-

bers by deterministic means is, of course, living in a state of sin,” the aforementioned

generator has an enormous period and has been successfully tested.

If, for instance, all the points of the orbit O2000(2000, 0) are laid out on an A4

sheet of paper, they will cover it so that the sheet is solid grey at different intervals

of time. Hence it follows that the aforesaid PRNG is also applicable to the Monte

Carlo method.

One of the most accepted algorithms for generating pseudorandom numbers

xn, n = 0, 1, 2, . . . , L is the algorithm offered by the American mathematician

Derrick Henry Lehmer. This algorithm is given by the following equalities:

mn+1 ≡ 517mn(mod 240), n = 0, 1, 2, . . . , L, m0 = 1,
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xn = 2−40mn.

As for modern PRNG, Mersenne twister is widely applied. This generator was

proposed in 1997 by Matsumoto and Nishimura. Its positive quality is its enormous

period (219937 − 1) and even distribution in 623 dimensions. But this generator

cannot be applied in cryptography because there is an algorithm which identifies

the sequence generated with the help of the Mersenne twister as nonrandom.

Let us point out one more application of the function fn. For rather high values

n, to each generating point (x, y) the function fn associates some array of numbers

or its fragment, under which it is difficult to reproduce numbers (n, x, y). It means

the function fn is a difficult-to-invert function and can be used when generating

key words for the one-time pad method.

Problem 5. The cryptosystem with the public key should be built based on the

function fn.

The author hopes that in future the function fn will be productively applied in

a new way and will take the rightful place in the theory of numbers.
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